#### Return all possible subsets of a set of distinct integers.

This problem deals with finding all possible subsets of a set of distinct integers. The elements in each subset must be in non-descending order, and the solution set must not contain duplicate subsets.

#### Problem

```Given a set of distinct integers, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not contain duplicate subsets.
For example,
If nums = [1,2,3], a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]```

#### Solution

This solution is in C++. Our A.I. can create solutions in multiple languages.
by kayakane
```#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

class Solution {
public:
vector<vector<int>> subsets(vector<int>& nums) {
vector<vector<int>> result;
vector<int> temp;
sort(nums.begin(), nums.end());
subsets(nums, 0, temp, result);
return result;
}

void subsets(vector<int>& nums, int start, vector<int>& temp, vector<vector<int>>& result) {
result.push_back(temp);
for (int i = start; i < nums.size(); i++) {
temp.push_back(nums[i]);
subsets(nums, i + 1, temp, result);
temp.pop_back();
}
}
};

int main() {
Solution s;
vector<int> nums = {1, 2, 3};
vector<vector<int>> result = s.subsets(nums);
for (int i = 0; i < result.size(); i++) {
for (int j = 0; j < result[i].size(); j++) {
cout << result[i][j] << " ";
}
cout << endl;
}
return 0;
}```

A.I. Evaluation of the Solution

The candidate's solution is complete and solves the problem. The approach is to use a backtracking algorithm to generate all possible subsets.

Evaluated at: 2022-12-05 08:15:40